Soru
Uzman Sistemlerden Sonra: Test ve Doğrulama – Stratejik Perspektif
1970’lerde bilgi eksikliği ve hesaplama kısıtları, umutların törpülendiği yapay zeka kışını gündeme getirdi. Günümüzde modeller milyarlarca parametreye ulaşıyor; veri kalitesi, güvenlik ve enerji verimliliği yeni gündemler yaratıyor. 1960’larda sembolik yapay zeka; mantık, sezgisel arama ve üretici kurallar üzerinden erken başarılar elde etti. 2010 sonrasında derin öğrenme, büyük veri ve GPU ivmesiyle görüntü, konuşma ve dilde sıçrama yarattı.
Takviyeli öğrenme, ödül sinyalleriyle eylem seçimlerini optimize eder; robotik ve oyun alanında etkileyicidir. Özellik mühendisliği yerini temsil öğrenmeye bırakırken, açıklanabilirlik ihtiyacı hiç azalmadı. Hibrit sistemler, sembolik kurallar ile nöral temsilleri birleştirerek doğruluk ve yorumlanabilirlik dengesi arıyor. Transformer’lar, uzun bağlamları modelleyip ölçekleme yasalarıyla daha iyi genelleme eğilimleri sergiledi.
Kenar bilişim, gecikmeyi düşürerek gizlilik ve maliyet avantajı sunar; mobil ve IoT senaryolarında öne çıkar. Dağıtık eğitim, veri ve model paralelleştirme teknikleriyle büyük modellerin pratik kullanımını mümkün kıldı. GPU’lar paralel hesaplama ile eğitim sürelerini kısaltırken, TPU ve özel hızlandırıcılar verimliliği artırdı.
Perakendede talep tahmini, fiyat optimizasyonu ve müşteri segmentasyonu operasyonel verimlilik sağlıyor. Kamu hizmetlerinde akıllı şehir uygulamaları, kaynak planlama ve acil durum yönetimini destekliyor. Medya ve yaratıcı endüstrilerde içerik üretimi, yerelleştirme ve etkileşimli deneyimler hız kazanıyor. Üretimde kalite kontrol, kestirimci bakım ve otonom lojistik, hataları azaltıp kapasiteyi yükseltiyor.
Önyargı, adalet ve kapsayıcılık; veri seçimi ve modelleme tercihleriyle yakından ilişkilidir. Enerji tüketimi ve sürdürülebilirlik, büyük modellerin karbon ayak izini tartışmanın merkezine yerleştirir. Güvenlik, sızdırma ve model kötüye kullanım senaryoları için kırmızı takım ve denetim mekanizmaları şarttır.
Model yaşam döngüsünde deney tasarımı, A/B testleri ve geriye dönük hata analizi kritik rol oynar. Ürünleştirme; güvenilir SLA’lar, gecikme bütçeleri ve maliyet optimizasyonu ilkelerini gerektirir. Gözlemlenebilirlik; veri kaynağı, model versiyonu ve dağıtım tarihi gibi meta verilerle güçlenir. Uluslararası yarışmalar, açık veri setleri ve platformlar dayanışma ve kıyaslamayı mümkün kılıyor. Turing, McCarthy, Minsky, Simon, Newell, Hinton, Bengio ve LeCun gibi isimler farklı dönemlerin sembolleridir.
Bu çerçeve, kurumların kendi bağlamlarına göre özelleştirebilecekleri esnek ve uygulamaya dönük bir yol haritası sunar.
1980’lerde uzman sistemler, alan bilgisini kural tabanlarına dökerek ticari karşılık buldu; ancak ölçeklenebilirlik sınırlı kaldı. Sağlıkta teşhis destek sistemleri, görüntü analizi ve klinik karar desteği ile erken tanıyı hızlandırıyor. Perakendede talep tahmini, fiyat optimizasyonu ve müşteri segmentasyonu operasyonel verimlilik sağlıyor. Transformer’lar, uzun bağlamları modelleyip ölçekleme yasalarıyla daha iyi genelleme eğilimleri sergiledi. 1970’lerde bilgi eksikliği ve hesaplama kısıtları, umutların törpülendiği yapay zeka kışını gündeme getirdi.
Başarılı projeler, net iş hedefleri, ölçülebilir metrikler ve güçlü veri yönetişimi üzerine kurulur. 1940’ların sonunda Alan Turing, makinelerin düşünebileceği fikrini cesurca ortaya attı ve Turing Testiyle ölçüt önerdi. 1980’lerde uzman sistemler, alan bilgisini kural tabanlarına dökerek ticari karşılık buldu; ancak ölçeklenebilirlik sınırlı kaldı. Kamu hizmetlerinde akıllı şehir uygulamaları, kaynak planlama ve acil durum yönetimini destekliyor. Gözlemlenebilirlik; veri kaynağı, model versiyonu ve dağıtım tarihi gibi meta verilerle güçlenir.
Günümüzde modeller milyarlarca parametreye ulaşıyor; veri kalitesi, güvenlik ve enerji verimliliği yeni gündemler yaratıyor. Aktarım öğrenmesi, sınırlı veride yeni alanlara uyarlanabilen güçlü bir yol haritası sunuyor. Gözlemlenebilirlik; veri kaynağı, model versiyonu ve dağıtım tarihi gibi meta verilerle güçlenir. Başarılı projeler, net iş hedefleri, ölçülebilir metrikler ve güçlü veri yönetişimi üzerine kurulur. İnsan merkezli tasarım, güven veren arayüzler ve geri bildirim döngüleriyle benimsemeyi artırır.
1960’larda sembolik yapay zeka; mantık, sezgisel arama ve üretici kurallar üzerinden erken başarılar elde etti. Transformer’lar, uzun bağlamları modelleyip ölçekleme yasalarıyla daha iyi genelleme eğilimleri sergiledi. 1970’lerde bilgi eksikliği ve hesaplama kısıtları, umutların törpülendiği yapay zeka kışını gündeme getirdi. Özellik mühendisliği yerini temsil öğrenmeye bırakırken, açıklanabilirlik ihtiyacı hiç azalmadı. Sembolik yaklaşım bilgi temsili ve çıkarımı, bağlantıcı yaklaşım ise öğrenen parametreler üzerinden yaklaşımı şekillendirdi.
1990’larda veri madenciliği, istatistiksel öğrenme ve destek vektör makineleri daha sağlam genelleme sundu. Ürünleştirme; güvenilir SLA’lar, gecikme bütçeleri ve maliyet optimizasyonu ilkelerini gerektirir. Günümüzde modeller milyarlarca parametreye ulaşıyor; veri kalitesi, güvenlik ve enerji verimliliği yeni gündemler yaratıyor. 1960’larda sembolik yapay zeka; mantık, sezgisel arama ve üretici kurallar üzerinden erken başarılar elde etti. Açık kaynak kütüphaneler ve bulut, araştırma ile uygulama arasındaki duvarları inceltti ve inovasyonu hızlandırdı.
Sponsor
